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Transmit Waveform/Receive Filter Design for MIMO
Radar With Multiple Waveform Constraints

Linlong Wu , Prabhu Babu, and Daniel P. Palomar , Fellow, IEEE

Abstract—In this paper, we consider the joint design of both
transmit waveforms and receive filters for a colocated multiple-
input-multiple-output (MIMO) radar with the existence of signal-
dependent interference and white noise. The design problem is
formulated into a maximization of the signal-to-interference-plus-
noise ratio (SINR), including various constraints on the transmit
waveforms. Compared with the traditional alternating semidefinite
relaxation approach, a general and flexible algorithm is proposed
based on the majorization-minimization method with guaranteed
monotonicity, lower computational complexity per iteration and/or
convergence to a B-stationary point. Many waveform constraints
can be flexibly incorporated into the algorithm with only a few
modifications. Furthermore, the connection between the proposed
algorithm and the alternating optimization approach is revealed.
Finally, the proposed algorithm is evaluated via numerical exper-
iments in terms of SINR performance, ambiguity function, com-
putational time, and properties of the designed waveforms. The
experiment results show that the proposed algorithms are faster
in terms of running time and meanwhile achieve as good SINR
performance as the the existing methods.

Index Terms—MIMO radar, SINR maximization, joint
design, waveform constraints, majorization-minimization (MM).

I. INTRODUCTION

UNLIKE a “conventional” radar, a multiple-input-multiple-
output (MIMO) radar transmits several probing wave-

forms simultaneously from its transmit antennas. Returns from
the target and the interferers are jointly processed by the re-
ceive antennas [1]. A MIMO radar can improve the interference
rejection capability and parameter identifiability, as well as pro-
vide flexibility for transmit beam pattern design [2]. There are
two kinds of MIMO radar systems: MIMO radar with widely
separated antennas [3] and MIMO radar with colocated an-
tennas [4], [5]. Recently, a cognitive approach for radar sys-
tems, which capitalizes on the information obtained from the
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surrounding environment or the prior knowledge stored in the
platform, was proposed [6], [7].

The significance of MIMO radar and the cognitive approach
has recently motivated active research into the waveform design.
The radar waveform design problem can be classified roughly
into three categories. The first category addresses the design
problem by assuming its independence from the receive filter.
Both [8] and [9] considered the design of the covariance ma-
trix of the waveform to approximate a desired spatial transmit
beampattern. Based on the desired covariance matrix, [10] pro-
posed two algorithms to synthesize the corresponding BPSK
and QPSK transmitted symbols. In [11], the authors addressed
the robust design of the covaraince matrix considering the un-
certainty of the steering vector. The design of a unimodular
sequence with low autocorrelation sidelobes is optimized by
minimizing an “almost equivalent” problem instead of the orig-
inal integrated sidelobe level (ISL) problem [12] and and then
the authors incorporated the spectral constraint in [13]. Later,
[14] considered the ISL minimization problem directly and then
[15] extended the solution to the weighted case and the �p -norm
case. Further, both [16] and [17] designed the sequences by
shaping the auto-correlation and the cross-correlation simulta-
neously. In [18], the metric used for optimization is the convex
combination of the Kullback-Leibler divergences between the
densities of the observations. In [19], both the mutual informa-
tion (MI) and the mean-square error (MSE) were used as the
design criteria and the robust case was considered in [20]. In
[21], the authors arrived at a quartic problem, which considers
the Doppler effect under the disturbances of signal-dependent
interference and white noise.

The second category of waveform design considers the re-
ceive filter with the existence of signal-independent interference.
In [22]–[24], the authors considered the radar code design in the
presence of colored Gaussian disturbance, and then formulated
a nonconvex quadratic problem of maximizing the signal-to-
noise ratio (SNR), which was solved through semidefinite re-
laxation (SDR) and then rank-one randomization. In [25] and
[26], the authors addressed the robust case with an unknown
Doppler frequency of the target. In [27], the lower Chernoff
bound and the MI were considered to optimize the space-time
code under non-Gausssian target scattering. In [28] and [29], the
optimization criteria were extended to a general cost function,
and a min-max solution to robust design, which applies to many
commonly adopted performance measures, was proposed.

The third category of waveform design also considers
the receive filter but with the existence of signal-dependent
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interference. In [30], an iterative method was derived for the
case of an extended target and clutter, with only the finite
energy constraint considered. Similarity and constant energy
constraints were considered, and two alternating maximization
methods were proposed in [31]. In [32], besides the typical alter-
nating minimization method, a constrained proximal alternating
minimization technique was also proposed to deal with rank de-
ficient correlation matrices. In [33], the authors considered both
the average and worst-case performance metrics of the optimal
detector (with known Doppler shift) for waveform design. Then
in [34], both the transmit waveform and the receive filter were
considered jointly and a max-min problem was cast to robustify
the SINR. The method to solve this problem is based on a re-
laxed alternating maximization, followed by a synthesis stage.
Different from [34], which used a single filter, a Doppler filter
bank was deployed at the receiver in [35]. The joint design of
the transmit waveform and receive filter was also addressed in
[36]–[38].

Several waveform constraints are often incorporated into the
design problem with the consideration of the hardware con-
figuration and the application scene. The constant modulus
constraint [39] is often considered due to the limitations of
waveform generation hardware components, and the peak-to-
average ratio (PAR) constraint [26] is more general (mathe-
matically) than the unimodular case. In the practical sense, the
PAR constraint is more relaxed. The similarity constraint [22],
[23] is incorporated to force the designed waveform to be sim-
ilar to the reference one with desirable properties. In order to
reduce the interference caused by radar systems over the co-
existing telecommunication systems, a spectrum compatibility
constraint [40]–[44] is considered. All these constraints are sig-
nificant in practice and widely considered in the radar field.

Note that for joint design, a popular approach is to adopt the
alternating optimization scheme and then resort to semidefinite
relaxation (SDR) and rank-one reconstruction. The convergence
of the sequence of the objective values can be claimed as long
as the monotonicity of the approach and the boundedness of
the objective function hold. However, solving a rank-one con-
strained SDP problem at each iteration is time-consuming and
has no guarantee of optimality if some heuristic technique, e.g.,
reconstruction by randomization, on rank-one reconstruction is
used, which further results in the loss of convergence of the so-
lution (sub-)sequence.1 In addition, some waveform constraints
are necessarily incorporated into the design problem with the
consideration of hardware configuration and application sce-
narios. However, these constraints might raise the complexity

1To avoid possible misunderstanding, the convergence of the solution (sub-
)sequence is defined as limj→+∞{xk j } = x� , where x� is a stationary point
of the optimization problem. For the alternating optimization method, if the
minimum of each block subproblem is uniquely attained. Then, every limit
point of {xk } is a stationary point [45, Proposition 2.7.1]. For the case of only
two blocks, the minimizer still needs to be global but not necessarily unique.
In our case, it implies that the rank-one constrained SDP subproblem should
be solved optimally, e.g., the complex-valued homogeneous QCQPs with the
number of the constraints less than 5. Otherwise, the convergence does not hold
generally and should be analyzed ad-hoc. For interested readers, please refer to
[21], [35], [37] in which the alternating approach is used and the convergence
to a stationary point is proved.

of the corresponding algorithm. For example, in [30], closed-
form solutions at each iteration can be found when only the finite
energy constraint is considered. If other constraints, such as the
spectrum compatibility constraint, are considered, then it is not
as easy as the former case. For real-time application systems,
such as radar tracking and some communication networks, these
above issues require a great deal of care. Thus, a new algorithm,
which is not only faster than the SDR and able to guarantee both
monotonicity and convergence, but also general and flexible so
that various constraints can be handled within its framework, is
desired.

In this paper, we develop an algorithm for the joint design
problem based on the general majorization-minimization (MM)
method [46], [47] and that is capable of dealing with several
practical constraints. In order to illustrate the flexibility of our
algorithm, we consider four commonly required constraints on
the transmit waveform and for each case, we derive a corre-
sponding specific algorithm based on the general framework.
For each algorithm, we also analyze its computational cost on a
per-iteration basis. Given that many existing methods are based
on the alternating optimization approach, we also illustrate the
connection and the difference between the derived method and
such other methods. Experiments show that our method is very
efficient and flexible in dealing with various waveform con-
straints, and achieves faster CPU time and/or higher SINR com-
pared with the existing methods.

The rest of this paper is organized as follows. In Section II, we
introduce the system model and formulate the joint design prob-
lem of interest. In Section III, we first briefly introduce the gen-
eral MM method and then derive the general algorithm within
the MM framework. In Section IV, we consider four constraints
on the problem: the constant modulus constraint, the similarity
constraint, the PAR constraint, and the spectrum compatibility
constraint. At the end of this section, we give a complete descrip-
tion of these algorithms and analyze their computational cost.
In Section V, we interpret the alternating optimization method
from the perspective of the MM framework and reveal its con-
nection with our derived method. In Section VI, we analyze the
numerical performance of the proposed algorithm for each case
and compare our methods with the corresponding benchmarks.
Finally, the conclusions are given in Section VII.

Notation: Rn and Cn denote the n-dimensional real and com-
plex vector space, respectively. R≥0 and R<0 denote the set of
non-negative real numbers and the set of negative real num-
bers, respectively. Rm×n and Cm×n denote the m × n real and
complex matrix space, respectively. Boldface uppercase letters
stand for matrices. Boldface lowercase letters stand for column
vectors. Standard lowercase letters stand for scalars. (x)T and
(x)∗ denote the transpose and conjugate of a complex vector
x, respectively. Re(x) and arg(x) denote the element-wise real
part and the phase of a complex vector x, respectively. (X)T ,
(X)∗, (X)H , tr(X), vec(X), λmax(X), and λmin(X) denote
the transpose, complex conjugate, conjugate transpose, trace,
vectorization, largest eigenvalue, and smallest eigenvalue of a
matrix X, respectively. Diag(x) stands for a diagonal matrix
with its principal diagonal filled with x. IN denotes the N × N
identity matrix. xi denotes the i-th element of x. | · | denotes the
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modulus of a complex scalar or the element-wise modulus of a
complex vector. ‖ · ‖ denotes the �2-norm of a vector. ⊗ denotes
the Kronecker product. Dxf and ∂f

∂X denote the derivative of a
scalar function f on the vector x and the matrix X, respectively.
E(·) denotes the statistical expectation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a colocated MIMO radar system with Nt trans-
mit antennas and Nr receive antennas. Each transmit antenna
emits a waveform sm (n),m = 1, . . . , Nt, n = 1, . . . , N , with
N being the number of samples of each transmitted pulse. Let
s(n) ∈ CNt ×1 represent the n-th sample of the Nt waveforms.
Suppose the target of interest is located at the range-angle posi-
tion (r0 , θ0) with r0 = 0. Thus, the signals at the receive anten-
nas can be represented by (assuming that s(n) = 0 for n ≤ 0):

x (n) = αar (θ0)at (θ0)
T s (n) ej2π (n−1)ν0 + d (n) + v (n) ,

(1)
where

� α accounts for the target Radar Cross Section (RCS) with
E[|α|2 ] = σ2

0 . ν0 is the Doppler frequency of the target.
� at(θ0) ∈ CNt ×1 denotes the steering vector and ar (θ) ∈

CNr ×1 is the propagation vector. For simplicity and clear-
ness of expression, both the transmit and receive antennas
are assumed to be uniform linear arrays (ULAs) with half-
wavelength separation so that

at (θ) =
1√
Nt

[
1, e−jπ1 sin θ , . . . , e−jπ (Nt −1) sin θ

]T
,

(2)
and similarly for ar (θ). Please note that the assumption of
ULAs is not necessary for this model.

� d(n) accounts for the the superposition of K signal-
dependent uncorrelated point-like interferers. Specifically,
the k-th interferer is located at the range-angle position
(rk , θk ), where rk ∈ {0, 1, . . . , N}, θk ∈ {0, 1, . . . , L} ×

2π
(L+1) with L being the number of discrete azimuth sectors.
The received interfering vector d(n) can be expressed as
follows:2

d (n) =
K∑

k=1

αkar (θk )at (θk )T s (n − rk ) ej2π (n−1)νk ,

(3)
where αk is the complex amplitudes of the k-th interferer
with E[|αk |2 ] = σ2

k and νk is its Doppler frequency. Note
that the model of d(n) requires the knowledge of θk and
αk for k = 1, 2, . . . , K. This information can be obtained
based on a cognitive paradigm by using an environmental
dynamic database (EDDB) [37], [50], [51], which includes

2Strictly speaking, s(n − rk ) in (3) should be replaced by
∑

m
fd0

(m)s(n − rk − m) with fd0 (m) the coefficients of the interpolator for the
signal shifted by a fraction of the sampling interval dk . For more details,
please refer to [48]. In this work, dk is assumed to be (approximately) equal
to zero for simplicity. If not, the matrix Jrk

shown (6) should be replaced by∑
m

fd0 (m)Jrk +m in the model. In practice, the integer part rk can be sim-
ply implemented by sample delay while the fractional part dk would be realized
by a FIR fractional delay (FD) filter, which can be designed via many methods
[49].

a geographical information system (GIS), digital terrain
maps, previous scanning/acking files, etc. Through the use
of geospatial databases and its interaction with RCS clutter
models [21], [52, Ch. 15, 16], the location of potentially
strong discrete clutter return and its mean power σ2

k can be
estimated.

� v(n) denotes the additive Gaussian noise with v(n) ∼
N (0, σ2

v I).
Let x = [x(1)T . . .x(N)T ]T , s = [s(1)T . . . s(N)T ]T and

v = [v(1)T . . .v(N)T ]T . Expression (1) can be represented as

x = αA (r0 , θ0) s +
K∑

k=1

αkA (rk , θk ) s + v, (4)

where A(rk , θk ) is determined by the range position rk and the
spatial angle θk , given by

A (rk , θk ) =
[
Diag (p (νk )) ⊗

(
ar (θk )at (θk )T

)]
Jrk

, (5)

where Jrk
is the shift matrix given by

Jrk
(m,n) =

{
1, m − n = Nt× rk

0, m − n �= Nt× rk
(m,n) ∈{1, . . . , NtN}2 ,

(6)
and

p (νk ) =
[
1, ej2πνk , . . . , ej2π (N −1)νk

]T
(7)

with νk being the Doppler frequency for k = 0, 1, . . . ,K. Here-
after, the Doppler frequencies {νk}K

k=0 are assumed to be zero
without loss of generality (i.e., both the target and the interferers
are assumed to be slowly-moving or stay still), and A(rk , θk )
will be denoted by Ak for simplicity of notation.

Suppose linear finite impulse response receive filters w are
deployed. Then the output of the filter is given by

r = wH x = αwH A0s + wH
K∑

k=1

αkAks + wH v. (8)

Based on the model, the output SINR is given by

SINR =
σ2

0

∣∣wH A0s
∣∣2

wH
(∑K

k=1 σ2
kAkssH AH

k

)
w + σ2

vwH w
. (9)

Thus, the design problem can be formulated from the perspective
of maximizing the SINR as follows:

maximize
s, w

∣∣wH A0s
∣∣2

wH Ψ (s)w + wH w

subject to s ∈ S, (10)

where Ψ(s) =
∑K

k=1 qkAkssH AH
k , with positive qk = σ2

k/σ2
v

> 0, S = {s|‖s‖2 = 1, s ∈ Sc}, with Sc ∈ CN Nt denoting a
nonempty but not necessarily convex set.

Before proceeding with the design of the solution to problem
(10), we address some points of the problem formulation:

� Generally speaking, the problem is hard to solve due to the
nonconvex fractional objective, the nonconvex constraint,
and the diversity of S.
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� If the receive filter w is fixed, problem (10) becomes a
waveform design problem which can further be solved by
the SDP approach [31], [35], [37]. Thus, it is natural and
popular of using the alternating optimization method.

� Problem (10) is a minimum variance distortionless re-
sponse (MVDR) problem [53] with respect to w. If we
already know the optimal sequence s, the optimal receive
filter w will be easily obtained.

III. ALGORITHMIC FRAMEWORK FOR JOINT DESIGN WITH

VARIOUS SEQUENCE CONSTRAINTS

In this section, we will first introduce the general MM method.
Then, based on the MM method, we will derive an algorithmic
framework for the joint design problem with simplicity and
flexibility to deal with various waveform constraints.

A. Majorization-Minimization Method

The MM method is a powerful optimization scheme, espe-
cially when the problem is hard to tackle directly. The idea
behind the MM algorithm is to convert the original problem
into a sequence of simpler problems to be solved until conver-
gence. The key to using the MM method is to construct a simple
majorized problem that can be solved efficiently.

Consider a general optimization problem:

minimize
x

f (x)

subject to x ∈ X . (11)

At the �-th iteration, the update rule is

x(�+1) ∈ argmin
x∈X

u
(
x, x(�)

)
, (12)

where u(x, x(�)) is a majorizing function (majorizer) of f(x)
at x(�) .

The convexity of the constraint set X decides which type of
stationary points the MM method converges to. Suppose the
constraint set X is convex. The majorizer must satisfy the fol-
lowing conditions to guarantee the convergence to a d(irectional)
stationary point [54]:

u (x,y) ≥ f (x) , for ∀x,y ∈ X (13)

u (y,y) = f (y) , for ∀y ∈ X (14)

u′ (y,y;d) = f ′ (y;d) , for ∀d with y + d ∈ X (15)

u (x,y) is continuous on (x,y) , (16)

where f ′(y;d) is the directional derivative defined as f ′(y;d) =
limλ→0 inf f (y+λd)−f (y)

λ . In [54], it is proved that the limit point
x(∞) satisfies

f ′
(
x(∞) ;d

)
≤ 0, for ∀d with x(∞) + d ∈ X . (17)

Thus, x(∞) is called the d(irectional) stationary point.
Suppose the constraint set X is nonconvex. The condition

(15) needs to be modified to guarantee the convergence:

u′ (y,y;d) = f ′ (y;d) , for ∀d ∈ TX (y) , (18)

where u and f are defined on the whole R space and TX (y) is the
Boulingand tangent cone ofX at y. Following this modification,
we can prove that the limit point x(∞) satisfies

f ′
(
x(∞) ;d

)
≤ 0, for ∀d ∈ TX

(
x(∞)

)
. (19)

Thus, x(∞) is called the B(oulingand) stationary point
[55], [56].3

One interesting and useful property of MM-based methods is
monotonicity:

f
(
x(�+1)

)
≤ u

(
x(�+1) ,x(�)

)
≤ u

(
x(�) ,x(�)

)
= f

(
x(�)

)
,

(20)
where the first inequality follows from (13), the second one
follows from (12), and the last equality follows from (14).

Three points are worth to note here. First, the convergence
speed of the MM algorithm is mainly determined by the ma-
jorizer, i.e., how closely it resembles the original function. In
some cases, if the majorizer is ill-constructed, some accelera-
tion techniques have to be adopted. Second, from (20), we see
that even though x(�+1) is not the minimizer of u(x,x(�)), the
monotonicity can still be guaranteed as long as it improves the
function u(x(�+1) ,x(�)) ≤ u(x(�) ,x(�)). Third, the MM algo-
rithm is ready to be implemented with the combination of some
acceleration techniques without loss of convergence.4

B. Majorized Iteration Method for Joint Design

For a given s, problem (10) with respect to w can be equiva-
lently reformulated into

minimize
w

wH [Ψ (s) + I]w

subject to wH A0s = 1, (21)

to which a closed-form solution is given by

w� =
[Ψ (s) + I]−1 A0s

sH AH
0 [Ψ (s) + I]−1 A0s

. (22)

Substituting (22) into (10), and after some algebraic manipu-
lations, problem (10) reduces to

maximize
s

sH
(
AH

0 [Ψ (s) + I]−1 A0

)
s

subject to s ∈ S. (23)

3Following the notations and problem settings of [54], the proof mostly
follows that of [54, Theorem 1] with only “z + d ∈ X ” replaced by d ∈ TX (z),
which is based on [57, Proposition 4.7.1].

4The proof of the convergence of the accelerated MM mostly follows that
of [54, Theorem 1] with slight modifications on one equation: (following
the notations and problem settings of [54]) u(x, xrj ) ≥ u(MM(xrj ), xr j ) ≥
f (MM(xrj )) ≥ f (xrj +1 ) ≥ f (xrj + 1 ) ≥ u(xrj + 1 , xr j + 1 ), where MM (·)
is the MM algorithm mapping and xrj +1 is the next iteration point found by
the acceleration technique.
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Defining S = ssH , problem (23) is equivalent to

minimize
s,S

− sH
(
AH

0 [Ψ (S) + I]−1 A0

)
s

subject to S = ssH

s ∈ S, (24)

where Ψ(S) =
∑K

k=1 qkAkSAH
k .

Lemma 1: Denote the objective function of problem (24) by
f(s,S). Then, f(s,S) is a concave function of s and S jointly,
and a majorizer of f(s,S) is

u1 (s,S; s� ,S�) = −2 Re
(
zH

� s
)

+ 2 Tr (P�S)

− 2 Tr (P�S�) − f (s� ,S�) , (25)

where

z� = AH
0 [Ψ (S�) + I]−1 A0s� , (26)

P� =
K∑

k=1

qk

(
Qk

�

)H
S�Qk

� , (27)

and

Qk
� = AH

0 [Ψ (S�) + I]−1 Ak . (28)

Proof: See Appendix A. �
Ignoring the constant terms and undoing the change of vari-

ables S = ssH in the function (33), the first majorized problem
is then given by

minimize
s

sH P�s − Re
(
zH

� s
)

subject to s ∈ S. (29)

Whether problem (29) can be solved efficiently mainly de-
pends on the convexity of the constraint set S since the objective
function is already convex. In the following lemma, we will em-
ploy the MM strategy again to further simplify this objective
function. The reason we conduct the second majorization is that
after simplifying the objective function, closed-form solutions
to these subproblems will probably be found for many con-
straint cases, even nonconvex ones, which will be seen clearly
in Section IV.

Conducting the second majorization lowers the complexity
at each iteration by finding a probable closed-form solution. At
the same time, the second majorizing function might become
looser, which consequently increases the number of iterations
for the convergence. Thus, there is clearly a trade-off between
the complexity of each iteration and the number of iterations.
This trade-off reminds us which majorization should be used
when dealing with a specific constraint set. In the following,
we derive algorithms based on the first majorization and/or the
second majorzation, and the trade-off can be reflected clearly in
the simulation of the similarity constraint case.

Lemma 2: [14] Let L be an n × n Hermitian matrix and M
be another n × n Hermitian matrix such that M � L. Then for
any point x0 ∈ Cn , the quadratic function xH Lx is majorized
by xH Mx + 2 Re(xH (L − M)x0) + xH

0 (M − L)x0 at x0 .

By using the above lemma, a majorizer of the objective func-
tion of problem (29) can be constructed as follows:

u2 (s, s�) = λu (P�) sH s + 2Re
(
sH (P� − λu (P�) I) s�

)

+ sH
� (λu (P�) I − P�) s� − Re

(
zH

� s
)
, (30)

where λu (P�) is an upper bound of the eigenvalues of the pos-
itive semidefinite matrix P� , which could be simply chosen as
Tr(P�) considering the computation cost. Please note that the
tightness of the upper bound λu (P�) affects the performance of
the convergence speed.

Due to sH s = 1, we have the following second majorized
problem:

minimize
s

Re
(
vH

� s
)

subject to s ∈ S, (31)

where

v� = 2 (P� − λu (P�) I) s� − z� . (32)

IV. FOUR CASES OF THE JOINT DESIGN

In this section, we will consider four waveform constraints:
the constant modulus constraint, the similarity constraint, the
PAR constraint and the spectral compatibility constraint. For
the constant modulus constraint and the PAR constraint, we
derive the algorithms based on the second majorization. For
the similarity constraint, we derive two algorithms based on
the first and second majorizations, respectively. For the spectral
compatibility constraint, both the global design and the local
design are considered, where the former is based on the first
majorization and the latter is based on the second majorization.

A. Constant Modulus Constraint

Note that in practice, due to the limitations of hardware com-
ponents (such as the maximum signal amplitude clip of A/D
converters and power amplifiers), it is usually desirable to trans-
mit constant modulus waveforms. Problem (31) becomes

minimize
s

Re (v�s)

subject to |sn | =
1√

NNt

, for i = 1, . . . , NNt, (33)

which has the closed-form solution

s = −ejarg(v� )/
√

NNt, (34)

where ejarg(·) is an element-wise operation.
Note that if the constant modulus constraint in problem (33)

is removed from S, we can still obtain the closed-form solution
as s = − v

‖v‖ .

B. Similarity Constraint

Enforcing a similarity constraint introduces a trade-off be-
tween maximizing SINR and possessing desirable properties of
a known sequence. Thus, the design problem becomes finding
waveforms s in the neighborhood of the reference waveforms
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sref to maximize the SINR. The similarity constraint is usually
expressed as

‖s − sref‖∞ ≤ ε, (35)

where ‖sref‖2 = 1 and ε is within 0 ≤ ε ≤ 2√
N Nt

to control the
degree of similarity.

1) Method Based on the First Majorization: Note that if
the finite energy constraint is reduced to the constant modulus
constraint, the similarity constraint can be recast as in [23] and
we have the following problem:

minimize
s

sH P�s − Re
(
zH

� s
)

subject to |sn | =
1√

NNt

arg (sn ) ∈ [γn , γn + δ] , (36)

where γn = arg(sref(n)) − arccos(1 − NNtε
2/2) and δ = 2

arccos(1 − NNtε
2/2).

The block coordinate descent method (BCD) can be deployed
for problem (36). Assuming all the elements of s, except sn , are
fixed, the problem of sn is given by

minimize
sn

Re(a∗
nsn )

subject to |sn | =
1√

NNt

arg (sn ) ∈ [γn , γn + δ] , (37)

where

an = 2
N Nt∑

i=1,i �=n

siPn,i − zn , (38)

where Pn,i is the (n, i)-th entry of P� , and zn is the n-th element
of z. The closed-form solution to problem (37) is already shown
in [38] and rewritten as follows:

sn =
⎧
⎪⎪⎨
⎪⎪⎩

ej γ n√
N Nt

arg(vn) ∈
[
γn + δ

2 + (2k − 2) π, γn + (2k − 1) π
]

−ej arg(a n )
√

N Nt
arg(vn) ∈ [γn + (2k − 1) π, γn + δ + (2k − 1) π]

ej (γ n + δ )
√

N Nt
otherwise,

where ∃k ∈ Z, for n = 1, 2, . . . , NNt. (39)

2) Method Based on the Second Majorization: In this part,
we solve the problem based on the second majorization. Thus,
the problem becomes

minimize
s

Re
(
vH

� s
)

subject to |sn | =
1√

NNt

arg (sn ) ∈ [γn , γn + δ] , (40)

which has a closed-form solution similarly as follows:

sn =
⎧
⎪⎪⎨
⎪⎪⎩

ej γ n√
N Nt

arg(vn) ∈
[
γn + δ

2 + (2k − 2) π, γn + (2k − 1)π
]

−ej arg( v n )
√

N Nt
arg(vn) ∈ [γn + (2k − 1) π, γn + δ + (2k − 1) π]

ej (γ n + δ )
√

N Nt
otherwise,

where ∃k ∈ Z, for n = 1, 2, . . . , NNt. (41)

C. Peak-to-Average Power Ratio Constraint

The PAR constraint is a relaxed constraint in the practical
sense, although mathematically a more general one, as the uni-
modular case is just a particular case. Imposing the PAR con-
straint introduces a trade-off between the SINR and the PAR
level. The PAR constraint is usually expressed as

PAR =
max

1≤n≤N Nt

{
|sn |2

}

1
N Nt

‖s‖2 ≤ ε, (42)

where ε is the parameter controlling the acceptable level of PAR
with 1 ≤ ε ≤ NNt .

After considering the PAR constraint, let γ = ε
N Nt

, and the
problem becomes

minimize
s

Re (v�s)

subject to ‖s‖2 = 1

|sn | ≤
√

γ, (43)

Lemma 3: Without loss of generality, we assume that |v1 | ≥
|v2 | ≥ · · · ≥ |vN | and the number of nonzero elements of v is
m. Then the solution to problem (43) is as follows:

s = PS (v) , (44)

where

PS (·) = −
(
1R≥0 (1 − mγ)

)√
γum � ejarg(·)

−
(
1R< 0 (1 − mγ)

)
min{β|v|,√γ1} � ejarg(·) , (45)

min{·, ·}, | · | and ejarg(·) are element-wise operations,

1A (x) =
{

1, if x ∈ A,

0, otherwise,
(46)

um =

⎡
⎢⎢⎢⎣1, . . . 1︸ ︷︷ ︸

m

,

√
1 − mγ

NNtγ − mγ
, . . . ,

√
1 − mγ

NNtγ − mγ︸ ︷︷ ︸
N Nt −m

⎤
⎥⎥⎥⎦

T

,

and

β ∈
{

β

∣∣∣∣∣
N∑

n=1

min
{

β2 |vn |2 , γ
}

= 1, β ∈
[
0,

√
γ

min{|vn |||vn | �= 0}

]}
. (47)
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Proof: A similar proof has been given in [58]. For details
please refer to [58, Algorithm 2]. �

D. Spectral Compatibility Constraint

The interference control for the coexistence has been exten-
sively researched in cognitive radio [59], [60] and also applies
to the radar field. In order to control the interference brought
to the coexisting telecommunication systems, the spectral com-
patibility constraint is imposed to introduce a trade-off between
the SINR and the power spectral density (PSD).

The spectral compatibility constraint is given by [40]

cH Rc ≤ EI , (48)

where c is a transmitted coherent burst of N sub-pulses, and EI

is the maximum allowed interference; the spectral compatibility
matrix is defined as

R =
M∑
i=1

ωiRi , (49)

where ωi is the weight corresponding to the i-th coexisting
wireless network; and

Ri (m, l) =

⎧
⎨
⎩

fi
upper − fi

lower if m = l

e
j 2 π f i

2 (m −l )−e
j 2 π f i

1 (m −l )

j2π (m−l) if m �= l,
(50)

where fi
lower and fi

upper denote the lower and upper normalized
frequencies for the i-th wireless network, respectively. Thus,
cH Ric represents the energy of the radar system transmitted on
the i-th band [fi

lower , f
i
upper ], and consequently, cH Rc repre-

sents the total weighted energy of the sequence c transmitted on
all M bands.

1) Global Design for Spectral Compatibility: Recall that in
the model, s consists of the Nt waveforms with s = [s(1)T

. . . s(N)T ]T , where s(n) ∈ CNt ×1 for n = 1, . . . , N . Thus, the
waveform transmitted by the k-th antenna is given by

sk =
[
s (1, k)T . . . s (N, k)T

]T
for k = 1, 2, . . . , Nt, (51)

where s(i, k) represents the k-th element of s(i). The k-th wave-
form can be expressed as

sk = (IN ⊗ uk ) s = Uks, (52)

where uk = [

k−1︷ ︸︸ ︷
0, . . . , 0, 1,

Nt −k︷ ︸︸ ︷
0, . . . , 0] and k = 1, . . . , Nt . Thus,

the spectrum compatibility constraint for global design is
expressed as

sH
(
UH

1 RU1 + . . . + UH
Nt

RUNt

)
s = sH R̃s ≤ EI , (53)

where R is defined in (49). The inequality (53) means that the
total energy of all the Nt transmit waveforms on those M bands
is no more than a threshold. Therefore, the optimization problem
based on the first majorization is formulated as

minimize
s

sH P�s − Re
(
zH

� s
)

subject to ‖s‖2 = 1

sH R̃s ≤ EI , (54)

where the maximum allowed interference EI is with λmin(R̃)
≤ EI ≤ λmax(R̃).

Note that problem (54) can be equivalently reformulated as an
rank-one constrained SDP problem, which can be further solved
by SDR [61]. According to [62], there must exist a rank-one so-
lution for the SDR problem. Thus, the rank-constrained solution
procedure I proposed in [63] can be deployed to reconstruct the
global optimal s. However, this approach can guarantee the opti-
mality of the solution but at the cost of long running time. In the
context of radar application with emphasis on real-time capa-
bility, a fast-solving approach is desired as long as the solution
is suboptimal or good enough.

It is obvious that the constraint ‖s‖2 = 1 can be equivalently
rewritten as 1 ≤ ‖s‖2 ≤ 1. After this reformulation, the FPP-
SCA algorithm [64] can be applied. At the k-th iteration of the
FPP-SCA algorithm, we need to solve the following problem

minimize
s,t

sH P�s − Re
(
zH

� s
)

+ με

subject to ‖s‖2 ≤ 1 + ε

sH
k sk − 2Re

(
sH
k s
)
≤ ε − 1

sH R̃s ≤ EI

ε ≥ 0, (55)

where μ is the penalty parameter to scale the impact of the
penalty term.

Note that due to the slack variable ε, problem (55) is always
feasible and being a convex QCQP, which can be solved effi-
ciently by off-the-shelf solvers, e.g., MOSEK [65]. In order to
guarantee the feasibility of the solution to the original problem, a
large parameter μ is suggested in [64] to force the slack variable
toward zero. In terms of convergence, if FPP-SCA converges,
it converges to the KKT point of problem (55). Further, if the
converged slack variable ε is zero, then the remaining variable
s is the KKT point of problem (54).

2) Local Design for Spectral Compatibility: Note that for-
mulation (54) can only guarantee that the total energy on these
frequency intervals is below a threshold without discrimination
on the these intervals. However, in some application scenarios,
the priority of some frequency interval is higher than the oth-
ers because of the commercial or military purpose. In order to
obtain waveforms with satisfactory PSDs for these application
scenarios, we focus on designing the Nt waveforms separately.
The optimization problem is formulated as

minimize
{sk }N t

k = 1

Re
(
vH

� s
)

subject to ‖sk‖2 =
1
Nt

sH
k Risk ≤ Ei, for i = 1, . . . , M

sk =
[
s (1, k)T . . . s (N, k)T

]T
, (56)

where Ri is defined as (49) and Ei is the maximum allowed
interference with λmin(Ri) ≤ Ei ≤ λmax(Ri).
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Since the objective function is linear on {sk}Nt

k=1 , problem
(56) can be decomposed into Nt subproblems as follows:

minimize
sk

Re
((

vk
�

)H
sk

)

subject to ‖sk‖2 =
1
Nt

sH
k Risk ≤ Ei, for i = 1, . . . , M, (57)

where vk
� = [v(k), v(k + Nt), . . . , v(k + (N − 1)Nt)]T .

First, note that all the Nt subproblems can be solved in par-
allel. This parallel computing is only possible after the second
majorization. Second, problem (57) has (m + 1) quadratic con-
straints, which brings up the feasibility issue. The feasibility
of problem (57) depends on whether the feasible set of the M
inequality constraints has an nonempty intersection with the
equality constraint. However, establishing (in)feasibility of an
optimization problem is generally NP-hard. Instead of study-
ing the feasibility of this problem before solving it, we use the
FPP technique [64] directly on problem (57), which is similar
to the counterpart of the global design case and thus omitted.
The problem after using the FPP-SCA technique is always fea-
sible. As argued in [64], if (s�

k , ε�
k ) with ε� being the optimal

slack variable is the optimal solution and ε�
k = 0, then s� is an

optimal solution for problem (56). Otherwise, a compromise
has to be made to minimize constraint violations in the sense of
engineering application. In our case, if ε� is nonzero, we change
‖sk‖2 = 1

Nt
into ‖sk‖2 = 1

Nt
+ ε�

k . This means that the trans-

mit energy should be tuned from 1 to 1 +
∑Nt

k=1 ε�
k to satisfy the

spectrum compatibility constraints, which we believe is much
easier than choosing a well-selected {Ei}M

i=1 for feasibility. In
addition, note that our proposed algorithm is ready for this mod-
ification because changing ‖sk‖2 = 1

Nt
into ‖sk‖2 = 1

Nt
+ ε�

has no effect on its derivation.

E. Summary of Algorithm and Complexity Analysis

To summarize, the description of the algorithm with re-
spect to the above constraints is given in Algorithm 1. Here-
after, we use MIA-CMC, MIA-CMSC, MIA-PC and MIA-
SCCto denote the proposed Majorized Iterative Algorithm
with the Constant Modulus Constraint, Constant Modulus
and Similarity Constraint, PAR Constraint and Spectrum
Compatibility Constraint, respectively. MIA-CMSC can be
subdivided into MIA-CMSC1 (MIA-CMSC based on the first
majorization) and MIA-CMSC2 (MIA-CMSC based on the
second majorization). MIA-SCC can also be subdivided into
MIA-SCCG (MIA-SCC for Global design) and MIA-SCCL
(MIA-SCC for Local design).

We now analyze the computational complexity of the MIA-
based algorithms. The overall complexity of each MIA-XXX
method is linear with respect to the number of iterations.
For the convenience of analysis, we focus on the determin-
istic cost on a per-iteration basis, which comes from the fol-
lowing three sources: z� , P� , and s�+1 . The computational
cost of z� is O((NrN)3) because of the inversion operation.
With [Ψ(s) + I]−1 already computed, the computational cost

of Qk
� is O((NrN) · (NtN)2), and thus the computational

cost of P� should be O((NrN) · (NtN)2) + O((NtN)3). To
sum up, z� and P� contributes the total amount of complexity
O(N 3 · (max{Nr ,Nt})3), neglecting the lower order terms.

The update of s�+1 varies case by case: For MIA-CMC, MIA-
CMSC2 and MIA-PAR, the computation cost mainly comes
from the computation of λu (P�) and v� . The update of λu (P�)
is simply chosen as Tr(P�), so the computation cost isO(NtN).
The computational cost of v� isO((NtN)2). For MIA-CMSC1,
there are NNt subproblems due to the BCD scheme, and the
computational cost of each subproblem is O(NtN) because
of the update of an . Thus, the total computational cost is
O((NtN)2). For MIA-SCCG, MOSEK will reformulate prob-
lem (55) into the epigraph form by introducing one more slack
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variable. Then, there is one linear constraint and three second
order cone (SOC) constraints. The computational complexity of
solving the problem should be upper bounded by O((NtN)3.5),
the same order as second order cone programming (SOCP). Sim-
ilarly, the complexity of each subproblem of MIA-SCCL is also
upper bounded by O(N 3.5). Since there are Nt SOCP subprob-
lems, the computational cost is upper bounded byO(Nt · N 3.5).

V. CONNECTION AND COMPARISON WITH THE ALTERNATING

OPTIMIZATION METHOD

Given that many works address the joint design problem
through the alternating optimization approach, in this section,
we will first interpret the alternating optimization method from
an MM perspective, and then we will reveal the connection and
the difference between the alternating optimization method and
the MIA.

The alternating optimization method yields the following up-
date rules:

w�+1 = arg max
w

wH
(
A0ssH AH

0
)
w

wH (Ψ (s) + I)w
= α [Ψ (s�) + I]−1 A0s� ,

s�+1 = arg max
s ∈ S

sH
(
AH

0 w�+1wH
�+1A0

)
s

sH
(
Φ (w�+1) + wH

�+1w�+1I
)
s
. (58)

where α is a scalar that does not affect the optimality, and Φ(w)
=
∑K

k=1 qkAH
k wwH Ak .

It is popular to recast the problem with respect to s into a
rank-one constrained SDP problem and then resort to SDR and
some rank-one reconstruction technique. If the update rule of
w�+1 is substituted into that of s�+1 , the equivalent update rule
for problem (10) is given by:

s�+1 =

arg min
s ∈ S

−sHAH
0 [Ψ (s�) + I]−1A0s�sH

� AH
0 [Ψ (s�) + I]−1 A0s

sH
� AH

0 [Ψ (s�) + I]−1 [Ψ (s) + I] [Ψ (s�) + I]−1 A0s�

.

(59)

Proposition 4: Denote the objective functions of problem
(59) and problem (24) by ualt(s, s�) and f(s), respectively.
Then, ualt(s, s�) is a majorizer of f(s).

Proof: See Appendix B. �
Since S = ssH , ualt(s, s�) can be viewed equivalently as a

function of s andS, denoted as ualt(s,S; s� ,S�). The connection
between ualt(s, s�) and our first majorizer u1(s,S; s� ,S�) is
given in the following proposition.

Proposition 5: The function u1(s,S; s� ,S�) is a majorizer
of ualt(s,S; s� ,S�).

Proof: See Appendix C. �
The connection among the original objective function f(s),

the equivalent majorizer of the alternating optimization method
ualt(s, s�), the first majorizer u1(s,S; s� ,S�), and the second
majorizer u2(s, s�) is illustrated graphically in Fig. 1. Note that
the connections shown in Fig. 1 are based on the fact that a
closed-form solution of w can be found. The alternating opti-
mization approach also allows forcing suitable constraints on

Fig. 1. Connections among the original objective function f (s) and the ma-
jorizers ua lt (s, s� ),u1 (s, S; s� , S� ) and u2 (s, s� ).

w while it will become difficult to apply the proposed approach
if the closed-form solution of w is hard to be obtained.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical simulations to eval-
uate the proposed algorithms for the joint design problem.
Assume that both the transmitter and receiver are ULAs
with half-wavelength separation, Nt = 8, Nr = 8, and N =
20. A target is located at the range-angle position (0, 15◦)
with power |α0 |2 = 20 dB, and three fixed interferers are lo-
cated at the range-angle positions (0,−50◦), (1,−10◦), and
(2, 40◦), respectively. The power for each interferer is |αi |2 =
20 dB, for i = 1, 2, 3. The noise variance is σ2

ν = 0 dB. The or-
thogonal linear frequency modulation (LFM) waveforms are set
as the initial and also the reference waveforms for MIA-CMC,
MIA-CMSC, and MIA-PC. Denote the space-time sequence
matrix of the LFM waveform by S0 . The (k, n)-th entry of S0
is given by

S0 (k, n) =
1√

NNt

exp {j2π (n − 1) (k + n − 1) /N} ,

(60)
where k = 1, . . . , Nt and n = 1, . . . , N . The initial sequence
s0 ∈ CN Nt ×1 is obtained by stacking the columns of S0 . The
initial filter w0 is obtained according to (14) by using s0 . Un-
less otherwise specified, all the parameters are the same in the
numerical experiments. In the following experiment, we also
implement the accelerated version of the corresponding MIA-
type method, denoted by MIA-XXX-Accelerated. SQUAREM
[66], as an off-the-shelf acceleration scheme, is deployed as
the acceleration scheme. All experiments were carried out on
a Windows laptop with a 2.60 GHz i7-5600U CPU and 8 GB
RAM.

A. Joint Design With the Constant Modulus Constraint

The benchmark methods for the constant modulus constraint
are SOA1-CMC (sequential optimization algorithms 1 with
constant modulus constraint) and SOA2-CMC (sequential
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Fig. 2. Convergence plot: SINR versus CPU time for the constant modulus
case.

Fig. 3. Range-angle cut of the MIMO ambiguity function for the constant
modulus case.

optimization algorithms 2 with constant modulus constraint)
[31]. Both of them employ the SDR and randomization to solve
the rank-one constrained SDP problems iteratively.

In Fig. 2, we can see clearly that an obvious advantage of the
MIA-type methods is the guarantee of monotonicity, compared
with the fluctuation of the SINR achieved by the SOA methods.
Besides, both MIA-CMC and MIA-CMC-Accelerated are much
faster than the SOA-type methods in terms of the CPU time.

Fig. 3 shows the range-angle cut of the normalized MIMO
ambiguity function [67], [68], where rectangle and ellipse rep-
resent the locations of interferer and target, respectively. We
can see that the energy peak is located in the ellipse, while the
energy nulls are located in the rectangles. Fig. 3 also provides
the angle cut at the range r = 0 and the range cut at the angle
θ = 15◦. In the range cut, there is a pitfall for the ranges r = 1
and r = 2. For the beampattern, there is a peak located at the
target angle of 15◦ in the angle cut. Based on our simulation
results, the ambiguity functions designed via the proposed al-
gorithms for other constraint cases are also well-shaped. Thus,

Fig. 4. Convergence plot: SINR versus CPU time for the similarity case.
Similarity parameter: ε = 1/

√
NNt .

Fig. 5. Comparison of the phase of the reference and designed waveforms.

in the following experiments for other constraints, we focus on
the algorithm computational performance and the properties of
the designed sequence.

B. Joint Design With the Similarity Constraint

The benchmarks are SOA1-CMSC (sequential optimization
algorithms 1 with constant modulus and similarity constraints),
SOA2-CMSC (sequential optimization algorithms 2 with con-
stant modulus and similarity constraints) [31], and Algorithm 2
in [51] named ALT-DB here. SOA1-CMSC and SOA2-CMSC
are similar to SOA1-CMC and SOA2-CMC, respectively. ALT-
DB deploys the alternating scheme, and for the problem with
respect to s, the block coordinate descent method is used within
the Dinkelbach framework.

From Fig. 4, we can see that the MIA-type methods and ALT-
DB are better than the SOA-type methods in terms of both CPU
time and converged SINR. Further, MIA-CMSC2 is slightly
better than ALT-DB in terms of the achieved SINR with almost
the same performance on CPU time.

In Fig. 5, we compare the designed sequences with the ref-
erence LFM sequence. From the comparison, we find that all
these designed sequences are similar to the reference sequence
although there are some small mismatches.
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Fig. 6. Convergence plot: SINR versus CPU time for the PAR case. PAR
parameter: γ = 0.5.

C. Joint Design with the PAR Constraint

The SOA1-type method is modified and named SOA1-PC
to be a benchmark for the PAR case. The other benchmark
is the method proposed in [69] named ALT-SDP here. ALT-
SDP can be decomposed into two steps: SDPs of w and s are
solved alternately in the first step, and w and s are synthesized
by randomization in the second step. In the experiment about
computation efficiency, we only consider the the first step of
ALT-SDP. Note that the SINR achieved after the second step
may be smaller than that obtained in the first step, and the
running time should include the time for the synthesis stage.

Fig. 6 shows that the converged SINR achieved by MIA-PC
is about 3 dB higher than SOA1-PC and 5.7 dB higher than
ALT-SDP. In addition, MIA-PC converges much faster in terms
of CPU time.

D. Joint Design With the Spectrum Compatibility Constraint

The experiment settings are as follows: N = 40, Nt = 2 and
Nr = 4. For local design, two frequency intervals are consid-
ered. The first frequency interval is [f 1

lower , f
1
upper ] = [0.2, 0.3],

together with the spectral compatibility matrix R1 and the max-
imum allowed interference E1 . The second frequency inter-
val is [f 2

lower , f
2
upper ] = [0.75, 0.85], together with the spectral

compatibility matrix R2 and the maximum allowed interfer-
ence E2 . For global design, the spectral compatibility matrix is
R̃ =

∑Nt

k=1 UH
k RkUk , and the total allowed interference is EI .

The benchmark is the method proposed in [41] named ARCO
here.

For the global design of the the spectrum compatibility case,
Fig. 7 show the convergence curves. We can see that our method
is faster than the benchmark although both methods converges to
almost the same SINR. In addition, the averaged PSD’s designed
by these two methods are compared in Fig. 8, where two deep
nulls of the PSD designed by MIA-SCCG are much deeper than
the counterparts designed by the benchmark.

Further, we show the effect of the parameter EI in Fig. 9.
With respect to different values of EI , the achieved SINR’s
for both MIA-SCCG and ARCO are almost constant. However,

Fig. 7. Convergence plot for the global design: SINR versus CPU time
for the spectrum compatibility case with. Total allowed interference: EI =
(|λm ax (R2 ) + λm in (R2 )| + |λm ax (R1 ) + λm in (R1 )|) × 10−4 .

Fig. 8. Comparison of the average PSD of the designed waveforms for the
global design. Paremeter settings: EI = |λm ax (R1 ) + λm in (R1 )| × 10−4 +
|λm ax (R2 ) + λm in (R2 )| × 10−4 .

Fig. 9. The effect of EI on the achieved SINR.

the values of EI − sH R̃s are quiet different. Specifically, The
value of EI − sH R̃s of ARCO is smaller than that of MIA-
SCCG by about five orders of magnitude for each EI , which
means the spectrum compatibility constraint for ARCO is active
while it is not active for MIA-SCCG. This supports the re-



WU et al.: TRANSMIT WAVEFORM/RECEIVE FILTER DESIGN FOR MIMO RADAR WITH MULTIPLE WAVEFORM CONSTRAINTS 1537

TABLE I
COMPARISON OF THE CPU TIME OVER DIFFERENT N

TABLE II
COMPARISON OF THE SINR OVER DIFFERENT N

sults shown in Fig. 7 and Fig. 8 that MIA-SCCG achieves
the SINR as the same as ARCO but with a lower energy
threshold EI .

For the comparison of the global design and local designs, we
consider a different scenario, where the spectral requirement on
the second frequency interval is relaxed by lifting the maximal
allowed interference. Note that the global approach can also be
applied to this new scenario indirectly by choosing the appro-
priate values for ωi in (49). Fig. 10 shows that the PSD’s of
the designed waveforms, where the total energy tolerances are
the same for both approaches. From this figure, we can see that
both approaches emphasize the first interval more than the sec-
ond one. However, the performance of the MIA-SCCL is better
than that of the MIA-SCCG.

E. Performance Comparison Over Different N

In the previous sections, we have compared the performance
between the proposed MIA and the existing methods for differ-
ent scenarios for a fixed waveform length N . In this section, we
will evaluate these algorithms with respect to different N . The

Fig. 10. Comparison of MIA-SCCG and MIA-SCCL. Parameter settings:
E1 = |λm ax (R1 ) + λm in (R1 )| × 10−4 , E2 = |λm ax (R2 ) + λm in (R2 )
| × 10−1 , ω1 = 100, ω2 = 0.1, EI = Nt (ω1 E1 + ω2 E2 ).

simulation results are shown in Table I and II, where “N/A” is
due to the insufficient memory of the experiment laptop. Note



1538 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 6, MARCH 15, 2018

that for the alternating SDP approaches, the CPU time will in-
crease vastly for N ≥ 100 because they require the complexity
O((NtN)3 + (NtN)6.5) per iteration, and the PC we use runs
out of memory. Thus, we only provide the results of these bench-
marks for the case N = 50. From the tables, we can see that the
MIA, especially the accelearated version, can be applied to de-
sign long sequences considering the performance on both time
and SINR.

VII. CONCLUSION

In this paper, we consider the joint design problem for a
colocated MIMO radar, which is formulated as maximizing
the SINR subject to multiple waveform constraints. We have
derived an efficient and flexible algorithmic framework called
MIA (Majorized Iterative Algorithm) on the MM method, which
can handle multiple waveform constraints. Specifically, closed-
form solutions can be obtained at each iteration if the constant
modulus, similarity, or PAR constraint is considered. For the
spectrum compatibility constraint, both the local and global de-
signs are considered and the FPP-SCA is applied. In addition,
all the derived algorithms can guarantee monotonicity and have
lower computational complexity at each iteration compared with
the the alternating SDP approach. Numerical experiments show
the good performance of MIA under the above four constraints
and emphasize its efficiency in terms of the achieved SINR and
the CPU time.

APPENDIX

A. Proof of Lemma 1

Proof: Denote the objective function of (24) by f(s,S) and
define g(x,Y) = xH Y−1x, where Y � 0. The function
g(x,Y) = xH Y−1x is jointly convex in x and Y [70].
Let x = A0s and Y = I +

∑K
k=1 qkAkSAH

k . Both are affine
transformations. Thus, f(s,S) is jointly concave of s
and S.

Since f(s,S) is jointly concave in s and S, the first-
order approximation of f(s,S), denoted by u1(s,S; s� ,S�),
is a majorizer of f(s,S) at the point (s� ,S�), which is
given by

u1 (s,S; s� ,S�)

= f (s� ,S�) + Dsf |s�
(s − s�) + Ds∗f |s∗� (s∗ − s∗�)

+ Tr

((
∂f

∂S
|S�

)T

(S − S�)

)
+ Tr

((
∂f

∂S∗ |S∗
�

)T

(S∗ − S∗
�)

)

= f (s� ,S�) − sH
�

(
AH

0 [Ψ (S�) + I]−1 A0

)
(s − s�)

− sT
�

(
AH

0 [Ψ (S�) + I]−1 A0

)T

(s∗ − s∗�)

+ Tr

((
K∑

k=1

qk

(
Qk

�

)H
S�Qk

�

)
(S − S�)

)

+ Tr

⎛
⎝
(

K∑
k=1

qk

(
Qk

�

)H
S�Qk

�

)T

(S∗ − S∗
�)

⎞
⎠

= − f (s� ,S�) − 2Re
((

sH
� AH

0 [Ψ (S�) + I]−1 A0

)
s
)

+ 2Tr

((
K∑

k=1

qk

(
Qk

�

)H
S�Qk

�

)
S

)

− 2Tr

((
K∑

k=1

qk

(
Qk

�

)H
S�Qk

�

)
S�

)
. (61)

�

B. Proof of Proposition 4

Proof: Proving ualt(s, s�) is a majorizer of f(s) is equivalent
to proving that

sH AH
0 [Ψ (s) + I]−1 A0s

≥ sH AH
0 [Ψ (s�) + I]−1 A0s�sH

� AH
0 [Ψ (s�) + I]−1 A0s

sH
� AH

0 [Ψ (s�) + I]−1 [Ψ (s) + I] [Ψ (s�) + I]−1 A0s�

,

(62)

where the equality is achieved when s = s� .
Since [Ψ(s) + I] � 0, a unique positive definite square

root, denoted by Γ (s), exists. In addition, the denominator of
lalt(s� , s�) is positive. Then, (62) is equivalent to

∥∥∥Γ (s)−1 A0s
∥∥∥

2 ∥∥∥Γ (s) [Ψ (s�) + I]−1 A0s�

∥∥∥
2

≥
∣∣∣
〈
A0s, [Ψ (s�) + I]−1 A0s�

〉∣∣∣
2
. (63)

Due to∣∣∣
〈
A0s, [Ψ (s�) + I]−1 A0s�

〉∣∣∣

=
∣∣∣
〈
Γ (s)−1 A0s, Γ (s) [Ψ (s�) + I]−1 A0s�

〉∣∣∣ , (64)

we have
∥∥∥Γ (s)−1 A0s

∥∥∥
2 ∥∥∥Γ (s) [Ψ (s�) + I]−1 A0s�

∥∥∥
2

≥
∣∣∣
〈
Γ (s)−1 A0s, Γ (s) [Ψ (s�) + I]−1 A0s�

〉∣∣∣
2
, (65)

which follows the Cauchy-Schwarz inequality with equality
holding iff Γ (s)−1A0s = Γ (s)[Ψ(s�) + I]−1A0s� , or equiv-
alently, s = s� . �

C. Proof of Proposition 5

Proof: Define f(x,Y) = xH x
aH Ya with Y � 0. Let x = x0 +

tx1 and Y = Y0 + tY1 , with Y0 being positive definite and
Y1 being symmetric. Since d2 f

dt2 |t=0 = 2‖x‖2

(aH Y0 a)2 ≥ 0 , f(x,Y)
is jointly convex in x and Y. Let x = sH

� AH
0 [Ψ(s�) + I]−1

A0s, a = [Ψ(s�) + I]−1A0s� , and Y = I +
∑K

k=1 qkAkSAk .
Since x and Y are the affine transformation of s and S, respec-
tively, ualt(s,S; s� ,S�) is jointly concave in s and S. Thus,
the first-order approximation of ualt(s,S; s� ,S�), denoted by
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ûalt(s,S; s� ,S�), is a majorizer of ualt(s,S; s� ,S�) at the point
(s� ,S�), which is given by

ûalt (s,S; s� ,S�)

= ualt(s� ,S� ; s� ,S�) + Dsualt | (s − s�) + Ds∗ualt |s∗� (s
∗ − s∗�)

+ Tr

[(
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− 2Re

((
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0 [Ψ (S�) + I]−1 A0s�

)H

s
)

+ 2Tr

((
K∑

k=1
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(
Qk

�

)H
S�Qk

�

)
S

)

− 2Tr

((
K∑

k=1

qk

(
Qk

�

)H
S�Qk

�

)
S�

)
, (66)

which is exactly the same as u1(s,S; s� ,S�).
Therefore, u1(s,S; s� ,S�) is a majorizer of ualt(s,S; s� ,S�)

with equality holding iff s = s� . �
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